(文科)设向量a=(cos23°,cos67°),b=(cos68°,cos22°),u=a+tb(t∈R),则|u|的最小值是 _ .

问题描述:

(文科)设向量

a
=(cos23°,cos67°),
b
=(cos68°,cos22°),
u
=
a
+t
b
(t∈R),则|
u
|的最小值是 ___ .

u
=
a
+t
b
=(cos23°+tcos68°,cos67°+tcos22°)
=(cos23°+tsin22°,sin23°+λcos22°),
|
u
|2=(cos23°+tsin22°)2+(sin23°+tcos22°)2
=t2+
2
t+1=(t+
2
2
2+
1
2

∴当λ=-
2
2
时,|u|有最小值为
2
2

故答案为:
2
2