(文科)设向量a=(cos23°,cos67°),b=(cos68°,cos22°),u=a+tb(t∈R),则|u|的最小值是 _ .
问题描述:
(文科)设向量
=(cos23°,cos67°),a
=(cos68°,cos22°),b
=u
+ta
(t∈R),则|b
|的最小值是 ___ . u
答
=u
+ta
=(cos23°+tcos68°,cos67°+tcos22°)b
=(cos23°+tsin22°,sin23°+λcos22°),
|
|2=(cos23°+tsin22°)2+(sin23°+tcos22°)2u
=t2+
t+1=(t+
2
)2+
2
2
,1 2
∴当λ=-
时,|u|有最小值为
2
2
.
2
2
故答案为:
.
2
2