证明:在n维欧式空间中,两两成钝角的非零向量不多于N+1个

问题描述:

证明:在n维欧式空间中,两两成钝角的非零向量不多于N+1个
谢谢...

用反证法吧.
假设a1…an+2(下标,后同)两两互为钝角
n维空间任意n+1个向量线性相关,即存在不全为0的数k1….kn+1
使得k1a1+…+kn+1an+1=0
两边跟an+2内积,k1<a1,an+2>+…..+ kn+1<a1,an+2>=0
其中<a1,an+2>...<a1,an+2>全小于0,所以存在ki…大于0,kj…小于0.
负的移到另一边,kiai+…=-kjaj-…=v (0项可以去掉)
<v,v>=<kiai+…,-kjaj-…>=-kikj<ai,aj>…<0,矛盾.