若有理数a,b,c满足:(a-1﹚²+﹙2a-b﹚²+|a-3c|﹦0,求a+b+c的值
问题描述:
若有理数a,b,c满足:(a-1﹚²+﹙2a-b﹚²+|a-3c|﹦0,求a+b+c的值
答
∵(a-1﹚²+﹙2a-b﹚²+|a-3c|﹦0,
∴(a-1﹚²=0,﹙2a-b﹚²=0, |a-3c|﹦0,
a-1=0, 2a-b=0, a-3c=0
解得:a=1, b=2, c=1/3
∴a+b+c
=1+2+(1/3)
=10/3.
答
因为(a-1)²>=0,﹙2a-b﹚²>=0,|a-3c|>﹦0,
要使(a-1﹚²+﹙2a-b﹚²+|a-3c|﹦0,
则(a-1)²=0,解得a=1
且﹙2a-b﹚²=0,解得2-b=0,b=2
且|a-3c|﹦0,解得1-3c=0,c=1/3
a+b+c
=1+2+1/3
=10/3
希望能够帮助你,有疑问欢迎追问,