过点A(1,0)做直线l交已知直线x+y+5=0于点B,在线段AB上取一点P,使得|AP||PB|=1/3,求点P的轨迹方程.

问题描述:

过点A(1,0)做直线l交已知直线x+y+5=0于点B,在线段AB上取一点P,使得

|AP|
|PB|
=
1
3
,求点P的轨迹方程.

设P点坐标为(x,y),B点坐标为(x′,y′),

|AP|
|PB|
=
1
3

x=
1
4
(x′+3)
y=
1
4
y′

x′=4x−3
y′=4y

由B点(x′,y′)在直线x+y+5=0上,
故4x-3+4y+5=0,
即2x+2y+1=0,
即点P的轨迹方程为2x+2y+1=0.