正整数按下列方法分组:{1},{2,3,4},{5,6,7,8,9},{10,11,12,13,14,15,16},…,记第n组各数之和为An;由自然数的立方构成下列数组:{03,13},{13,23},{23,33},{33,43},…,

问题描述:

正整数按下列方法分组:{1},{2,3,4},{5,6,7,8,9},{10,11,12,13,14,15,16},…,记第n组各数之和为An;由自然数的立方构成下列数组:{03,13},{13,23},{23,33},{33,43},…,记第n组中两数之和为Bn,则An-Bn=______.

由题意可得,第n组数据构成以1为公差的等差数列,共有2n-1个数,且最后一个数位n2
则由等差数列的通项公式可得第n组数的第一个数为:n2-2n+2
由等差数列的前n项和公式可得,An

2n2−2n+2
2
•(2n−1)=(2n−1)(n2−n+1)
Bn=(n-1)3+n3=(2n-1)[((n-1)2-n(n-1)+n2]=(2n-1)(n2-n+1)
An-Bn=0
故答案为:0