ABCD is a rhombus where A=(-3,0),B=(0,4),C=(5,4) and D=(2,0) Prove that the diagonals are perpendicular bisectors of on

问题描述:

ABCD is a rhombus where A=(-3,0),B=(0,4),C=(5,4) and D=(2,0) Prove that the diagonals are perpendicular bisectors of on another.
网上是这样说的:.因为ABCD is a rhombus[ABCD是菱形],所以the diagonals are perpendicular bisectors of on another[一条对角线垂直并平分另一条对角线]
可如果这样,A=(-3,0),B=(0,4),C=(5,4) and D=(2,0)又有什么用呢

ABCD 是菱形的四个点,估计是计算两条对角线的斜率,然后证明垂直吧.