[数列]n边形每边上都涂上红黄蓝三色中一种,要使相邻边不同色,有f(n)种涂法,求f(n)

问题描述:

[数列]n边形每边上都涂上红黄蓝三色中一种,要使相邻边不同色,有f(n)种涂法,求f(n)
n边形每边上都涂上红黄蓝三色中一种,要使相邻边不同色,有f(n)种涂法,求f(n)
能凑出答案也好的

(1)先选定一边,它有3种颜色可以选,按逆时针顺序,其下一条边有2种颜色可选择,再下面一条边仍然有2种,一直到第n条边,要是不考虑第一条边会不会与第n条边颜色相同,应该一共有3*2^(n-1)种涂法.
(2)在这个方法中,我们只要减去第一条与第n条颜色相同的涂法就可以了,第一条与第n条颜色相同而其他邻边颜色均不同的涂法有:
3*2^(n-2)种,但是其中又要除去第n-1条边与第n条边颜色相同的情况
.
以次类推,
f(n)=3*[2^(n-1)-2^(n-2)+2^(n-3)-2^(n-4)+...+(-1)^n*2],
若n为奇数:
f(n)=3*[2^(n-2)+2^(n-4)+...+2]=2^n-2
若n为偶数:
f(n)=3*[2^(n-2)+2^(n-4)+...+16+4+2]=2^n+2