求函数y=4分之根号2sin(4分之派﹣x)+4分之根号6cos(4分之派﹣x)的最小正周期及单调增区间

问题描述:

求函数y=4分之根号2sin(4分之派﹣x)+4分之根号6cos(4分之派﹣x)的最小正周期及单调增区间

y=√2/4sin(π/4-x)+√6/4cos(π/4-x)
=√2/2{1/2sin(π/4-x)+√3/2cos(π/4-x)}
=√2/2{cosπ/3sin(π/4-x)+sinπ/3cos(π/4-x)}
=√2/2sin(π/4-x-π/3)
=√2/2sin(-x-π/12)
= -√2/2sin(x+π/12)
最小正周期:2π
单调增区间:2kπ+π/2 即 2kπ+5/12π

∵y=√2/4sin(π/4-x)+√6/4cos(π/4-x)
=√2/2sin(π/4-x+π/3)=-√2/2sin(x-7π/12)
∴最小正周期T=2π
单调增时:2kπ+π/2≤x-7π/12≤2kπ+3π/2 k∈Z
∴单调增区间为 [2kπ+13π/12,2kπ+25π/12] k∈Z