已知a向量=(sinx,根号3/4),b向量=(cos(x+π/3),1),函数fx=a向量乘以b向量(1)fx的最值和单调减区间(2)已知在三角形ABC中,角ABC的对边分别为abc.f(A)=0,a=根号3,求三角形ABC的面积最大值

问题描述:

已知a向量=(sinx,根号3/4),b向量=(cos(x+π/3),1),函数fx=a向量乘以b向量
(1)fx的最值和单调减区间
(2)已知在三角形ABC中,角ABC的对边分别为abc.f(A)=0,a=根号3,求三角形ABC的面积最大值

f(x)=向量a.向量b
=sinxcos(x+π/3)+√3/4.
=(1/2)[sin(x+x+π/3)+sin(x-(x+π/3)]+√3/4.
=(1/2)[sin(2x+π/3)-sinπ/3]+√3/4
=(1/2)[sin(2x+π/3)-√3/2]+√3/4
=(1/2)sin(2x+π/3)-√3/4+√3/4.
∴f(x)=(1/2)sin(2x+π/3).
(1) 当sin(2x+π/3)=1,即 2x+π/3=π/2.x=π/12时,f(x)具有最大值,f(x)max=(1/2).
当sin(2x+π/3)=-1,即 2x+π/3=3π/2,x=7π/12时,f(x)具有最小值,f(x)min=-(1/2).
∵sinx的单调递减区间为:2kπ+π/2