设{an}是各项互不相等的正数等差数列,{bn}是各项互不相等的正数等比数列,a1=b1,a2n+1=b2n+1,则( ) A.an+1>bn+1 B.an+1≥bn+1 C.an+1<bn+1 D.an+1=bn+1
问题描述:
设{an}是各项互不相等的正数等差数列,{bn}是各项互不相等的正数等比数列,a1=b1,a2n+1=b2n+1,则( )
A. an+1>bn+1
B. an+1≥bn+1
C. an+1<bn+1
D. an+1=bn+1
答
因为等差数列{an}和等比数列{bn}各项都是正数,且a1=b1,a2n+1=b2n+1,
所以an+1-bn+1=
-
a1+a2n+1
2
=
b1•b2n+1
=
a1+a2n+1−2
a1+a2n+1
2
≥0.(
−
a1
)2
a2n+1
2
即 an+1≥bn+1.
故选 A.