已知(sina-cosa)/(sina+cosa)=1/3,则cos^4(60°+a)—cos^4(30°-a)的值为?这道题我是这样做的(sinA-cosA)/(sinA+cosA)=1/3===>(tanA-1)/(tanA+1)=1/3===>tanA=2{cos(60+A)}^4-cos(30-A)}^4={cos(60+A)}^4-cos(90-(60+A)}^4={cos(60+A)}^4-sin(60+A)}^4={{cos(60+A)}^2+sin(60+A)}^2}*{{cos(60+A)}^2-sin(60+A)}^2}={cos(60+A)}^2-sin(60+A)}^2=cos(120+2A)=cos120cos2A-sin120sin2A=-cos2A/2-√3sin2A/2∵tanA=2∴sin2A=2tanA/(1+tanA^2)=4/5cos2A=(1-tanA^2)/(1+tanA^2)=-3/5(万能公式)∴原式=-cos2A/2-√3sin2A/2=3/10-

问题描述:

已知(sina-cosa)/(sina+cosa)=1/3,则cos^4(60°+a)—cos^4(30°-a)的值为?
这道题我是这样做的(sinA-cosA)/(sinA+cosA)=1/3===>(tanA-1)/(tanA+1)=1/3===>tanA=2
{cos(60+A)}^4-cos(30-A)}^4={cos(60+A)}^4-cos(90-(60+A)}^4
={cos(60+A)}^4-sin(60+A)}^4
={{cos(60+A)}^2+sin(60+A)}^2}*{{cos(60+A)}^2-sin(60+A)}^2}
={cos(60+A)}^2-sin(60+A)}^2
=cos(120+2A)
=cos120cos2A-sin120sin2A
=-cos2A/2-√3sin2A/2
∵tanA=2
∴sin2A=2tanA/(1+tanA^2)=4/5
cos2A=(1-tanA^2)/(1+tanA^2)=-3/5(万能公式)
∴原式=-cos2A/2-√3sin2A/2
=3/10-4√3/10
=(3-4√3)/10
但是结果不对,正确答案是2/3-2√3
请问我在哪里算错了呢?
这道题老师讲完了,正确答案的确是2/3-2√3,但老师做的方法与我的不同,

应该是对的

除了几个小细节,基本没问题:
(sinA-cosA)/(sinA+cosA)=1/3===>(tanA-1)/(tanA+1)=1/3===>tanA=2
{cos(60+A)}^4-{cos(30-A)}^4={cos(60+A)}^4-{cos(90-(60+A)}^4
={cos(60+A)}^4-{sin(60+A)}^4
={{cos(60+A)}^2+{sin(60+A)}^2}*{{cos(60+A)}^2-{sin(60+A)}^2}
={cos(60+A)}^2-{sin(60+A)}^2
=cos(120+2A)
=cos120cos2A-sin120sin2A
=-cos2A/2-√3sin2A/2(下同)
建议检查一下,题目有没有出错

你做得对,我的得数相同,可能是答案错了.从解题方法看得出来你对三角恒等变换已经很熟悉了,不要气馁,加油!