证明:-根号2≤sina+cosa≤根号2.证明:-根号2≤sina+cosa≤根号2.证明:设P(x,y)为角a终边与单位圆的交点,则x^2+y^2=1,sina+cosa=y+x,又(x+y)^2=x^2+2xy+y^2=2-(x-y)^2≤2,x+y的绝对值小于等于根号2,所以得政为什么(x+y)^2=x^2+2xy+y^2=2-(x-y)^2≤2?
问题描述:
证明:-根号2≤sina+cosa≤根号2.
证明:-根号2≤sina+cosa≤根号2
.证明:设P(x,y)为角a终边与单位圆的交点,则x^2+y^2=1,sina+cosa=y+x,又(x+y)^2=x^2+2xy+y^2=2-(x-y)^2≤2,x+y的绝对值小于等于根号2,所以得政
为什么(x+y)^2=x^2+2xy+y^2=2-(x-y)^2≤2?
答
(1)sina+cosa=根号2(sina*根号2/2+cosa*根号2/2)=根号2sin(a+∏/4)
-1≤sin(a+∏/4)≤1
所以:-根号2≤sina+cosa≤根号2
(2)(x+y)^2=x^2+2xy+y^2=sina^2+cosa^2+2sinacosa=1+2sinacosa
(x-y)^2=sina^2+cosa^2-2sinacosa=1-2sinacosa
2-(x-y)^2=(x+y)^2
答
因为x^2+y^2=1
所以 x^2+y^2=2-1=2-(x^2+y^2)
所以x^2+2xy+y^2=2-(x^2+y^2-2xy)=2-(x-y)^2
答
因为2x²+2y²=2
所以x²+2xy+y²
=(2x²+2y²)-(x²-2xy+y²)
=2-(x-y)²