已知m^2+m-1=0,求代数式m^3+2m^2+2004的值
问题描述:
已知m^2+m-1=0,求代数式m^3+2m^2+2004的值
答
m^2+m-1=0,则m²+m=1
m^3+2m^2+2004
=m³+m²+m²+2004
=m(m²+m)+m²+2004
=m+m²+2004
=1+2004
=2005
答
m^2+m-1=0
m^2+m=1
m^3+2m^2+2004
=m^3+m^2+m^2+2004
=m(m^2+m)+m^2+2004
=m+m^2+2004
=1+2004
=2005
答
m²+m-1=0
m^3+m²-m=0
m^3+2m²-m-m²=0
m^3+2m²=m²+m
所以,m^3+2m²+2004=m²+m+2004=1+2004=2005