已知向量a=(4,5cosα),b=(3,-4tanα)(1)若a∥b,试求sinα;(2)若a⊥b,且α∈(0,π2),求cos(2α-π4)的值.
问题描述:
已知向量
=(4,5cosα),a
=(3,-4tanα)b
(1)若
∥a
,试求sinα;b
(2)若
⊥a
,且α∈(0,b
),求cos(2α-π 2
)的值. π 4
答
(1)因为向量a=(4,5cosα),b=(3,-4tanα)由a∥b得,所以15cosα+16tanα=0,即15-15sin2α+16sinα=0,解得:sinα=53(舍)或sinα=-35.(2)由a⊥b得,12-20cosα•tanα=0,∴sinα=35,又α∈(0,π2),∴c...