已知双曲线的中心在坐标原点,焦点在x轴上,F1,F2分别在左右焦点,双曲线的右支上有一点P,已知双曲线的中心在原点,焦点在x轴上,F1,F2分别为左右焦点,双曲线右支点上有一点P满足∠F1PF2=60°,△F1PF2的面积为2√3,又双曲线离心率为2,求该双曲线的方程及P点坐标

问题描述:

已知双曲线的中心在坐标原点,焦点在x轴上,F1,F2分别在左右焦点,双曲线的右支上有一点P,
已知双曲线的中心在原点,焦点在x轴上,F1,F2分别为左右焦点,双曲线右支点上有一点P满足∠F1PF2=60°,△F1PF2的面积为2√3,又双曲线离心率为2,求该双曲线的方程及P点坐标

由双曲线焦点三角形的面积公式:S△F1PF2=b²/tan(∠F1PF2/2)=b²/tan30°=√3b²得:√3b²=2√3得:b²=2c/a=2,则c=2a则b²=c²-a²=3a²=2得:a²=2/3,c²=4a²...