过椭圆x^2/4 +y^2=1的右焦点,且斜率k=-1的直线l,交椭圆于A,B两点,求|AB|的值

问题描述:

过椭圆x^2/4 +y^2=1的右焦点,且斜率k=-1的直线l,交椭圆于A,B两点,求|AB|的值

x^2/4 +y^2=1a=2,b=1,c=√3右焦点F(√3,0)k=-1L:y=-(x-√3)=-x+√3,x=√3-yx^2/4 +y^2=1x^2+4y^2=4(√3-y)^2+4y^2=47y^2-2√3y-1=0xA+xB=2√3/7,xA*xB=-1/7 (yA-yB)^2=(xA-xB)^2=(xA+xB)^2-4xA*xB=(2√3/7)^2+4/7=40...