求被积函数为指数函数与三角函数乘积的定积分积分区间为[0,正无穷),被积函数为“e^(-bx)乘以cos[w(t-x)”,积分变量是x.希望详细解答.
问题描述:
求被积函数为指数函数与三角函数乘积的定积分
积分区间为[0,正无穷),被积函数为“e^(-bx)乘以cos[w(t-x)”,积分变量是x.
希望详细解答.
答
∫e^(-bx)*{cos[w(t-x)] + i sin[w(t-x)]}dx = ∫e^(-bx+i*w(t-x))dx
这个计算的相信你能搞定了吧
结果的实部就是你那个,虚部是e^(-bx)*sin[w(t-x)]积分的结果。
答
用分部积分,利用(cosx)"=-sinx (sinx)'=cosx (e^x)'=e^x得特点,使得右边也出现与所求相同的项,然后移项即可求得∫e^(-bx)*cos[w(t-x)dx,=∫cos[w(t-x)]d[(-1/b)*e^(-bx)]=-(1/b)cos[w(t-x)]e^(-bx)+(1/b)∫e^(-bx)*(...