求证恒等式:(tan a+sec a-1)/(tan a -sec a+1)=(1+sin a)/cos a

问题描述:

求证恒等式:(tan a+sec a-1)/(tan a -sec a+1)=(1+sin a)/cos a

(tanA+secA-1)/(tanA-secA+1)=(sinA+1-cosA)/(sinA-1+cosA)
即只需证:(sinA+1-cosA)/(sinA-1+cosA)=(1+sinA)/cosA
由于(sinA+1-cosA)*cosA=sinAcosA+cosA-cosA^2
且(sinA-1+cosA)*(1+sinA)=-1+cosA+sinA^2+sinAcosA=sinAcosA+cosA-cosA^2所以(tanA+secA-1)/(tanA-secA+1)=(1+sinA)/cosA

令2β = α 左边 =(1+secα+tanα)/(1+secα-tanα) =(cosα + sinα + 1)/(cosα-sinα+1) =(cosα + 1 + sinα)/(cosα+1-sinα) =(cos2β + 1 + sin2β)/(cos2β+1-sin2β) =[2cos^2(β) + 2sinβcosβ]/[2cos^2(...