高数极限和定积分问题~急~

问题描述:

高数极限和定积分问题~急~
x→0时,求limex^2-1-x^2/x^2(ex^2-1)
∫sin3xsin5xdx=?
X→∞时,求lim(2/∏-arctantx)^x
第3个问题应该是lim[(2arctanx)/∏]^x

罗比塔法则:
上下各自求导
lim(2xex^2-2x)/(2x(ex^2-1)+x^2ex^2)
=lim(2ex^2-2)/(2(ex^2-1)+xex^2)
继续求导:
=lim4xex^2/(4xex^2+2x^2ex^2)
=lim4ex^2/(4ex^2+2xex^2)
=4/(4+0)
=1
积化和差
∫sin3xsin5xdx=
∫1/2(cos2x-cos8x)dx=
1/4sin2x-1/16sin8x+c
lim(2arctanx/π)^x
=lim(1+(2arctanx-π/π))^x
=lim[(1+(2arctanx-π/π))^[1/(2arctanx-π/π))](x(2arctanx-π/π))
=e^(x(2arctanx-π/π))
limx(2arctanx-π/π)
=lim(2arctanx-π/π)/(1/x)
罗比塔法则:
上下各自求导
=lim(2/π(1+x^2))/(-1/x^2)
=lim(-2x^2/π(1+x^2))
=-2/π
所以原式=e^(-2/π)