计算:1+11+2 + 11+2+3 +…+ 11+2+3+…+1994=(  ) A.39881995 B.39901995 C.39801995 D.39841995

问题描述:

计算:1+

1
1+2
 + 
1
1+2+3
 +…+ 
1
1+2+3+…+1994
=(  )
A.
3988
1995

B.
3990
1995

C.
3980
1995

D.
3984
1995

∵11+2+3+…+n,=1(n+1)n2,=2n(n+1),=2(1n-1n+1),∴1+11+2 + 11+2+3 +…+ 11+2+3+…+1994,=1+2(12-13+13-14+…11994−11995),=1+2×(12−11995),=39881995.故选A....