设Sk=1/k+1+1/k+2+…+1/2k,那么Sk+1=Sk+_.

问题描述:

设Sk=

1
k+1
+
1
k+2
+…+
1
2k
,那么Sk+1=Sk+______.

由Sk=

1
k+1
+
1
k+2
+…+
1
2k
,用K+1代替K
可得SK+1
1
(k+1)+1
+
1
(K+1)+2
+…+
1
2(K+1)

=
1
k+2
+
1
k+3
+…+
1
2k
+
1
2K+1
+
1
2K+2

SK+1SK
1
2K+1
+
1
2K+2
1
K+1
=
1
2k+1
1
2k+2

SK+1SK+
1
2K+1
1
2K+2

故答案为
1
2k+1
1
2k+2