设Sk=1/k+1+1/k+2+…+1/2k,那么Sk+1=Sk+_.
问题描述:
设Sk=
+1 k+1
+…+1 k+2
,那么Sk+1=Sk+______. 1 2k
答
由Sk=
+1 k+1
+…+1 k+2
,用K+1代替K1 2k
可得SK+1=
+1 (k+1)+1
+…+1 (K+1)+2
1 2(K+1)
=
+1 k+2
+…+1 k+3
+1 2k
+1 2K+1
1 2K+2
∴SK+1−SK=
+1 2K+1
−1 2K+2
=1 K+1
−1 2k+1
1 2k+2
∴SK+1=SK+
−1 2K+1
1 2K+2
故答案为
−1 2k+1
1 2k+2