y=(x^2)*(x-5)^3的单调区间和极值
问题描述:
y=(x^2)*(x-5)^3的单调区间和极值
答
求导可以得到y'=5x(x-5)^2(x-2);
对每一段分析可得,
x<0时y'大于0,单调增;
(0,2)时y'小于0,单调减;
x>5时y'大于等于0,单调增;
但x=5时y'为0;
所以极大值有(0,0);
有极小值(2,-108)