若z1=x+根号5+yi,z2=x-根号5+yi(x,y∈R),且|z1|+|z2|=6,则|2x-3y-12|的最大值?最小值?
问题描述:
若z1=x+根号5+yi,z2=x-根号5+yi(x,y∈R),且|z1|+|z2|=6,则|2x-3y-12|的最大值?最小值?
答
|z1| = {[x + 5^(1/2)]^2 + y^2}^(1/2),
|z2| = {[x - 5^(1/2)]^2 + y^2}^(1/2).
6 = |z1| + |z2|
说明点(x,y)到点(-5^(1/2),0)和点(5^(1/2),0)的距离之和为常数6.
点(x,y)在1个椭圆上.椭圆的2个焦点分别为点(-5^(1/2),0)和点(5^(1/2),0).椭圆的半焦距c = 5^(1/2).椭圆的长轴在x轴上.
设椭圆方程为 x^2/a^2 + y^2/b^2 = 1,
则,
3^2 = c^2 + b^2 = 5 + b^2, b = 2.
a^2 = c^2 + b^2 = 5 + 4 = 9,
a = 3.
椭圆方程为 x^2/3^2 + y^2/2^2 = 1,
可设椭圆上的点(x,y)满足x = 3cost, y = 2sint. 0