平面向量

问题描述:

平面向量
已知在三角形ABC中,M是BC的中点,点N在边AC上,且Ac=2NC,AM与BN相交于P,求AP与PM的比值.
图自己可以画的

向量法:
设BM=e1,CN=e2,
则AM=AC+CM=-3e2-e1,BN=2e1+e2.∵A、P、M和B、P、N分别共线,
∴存在λ、μ∈R,使得
AP=λAM=-λe1-3λe2,BP=μ BN=2μe1+μe2.
故BA=BP-AP=(λ+2μ)e1+(3λ+μ)e2.而BA=BC+CA=2e1+3e2,
由基本定理得 λ+2μ=2 3λ+μ=3 λ=4/5 μ=3/5
∴AP∶PM=4∶1.
几何法:
过M做MD//BN交AC于D
M是BC的中点
==>DC=DN =(1/2)NC
AN=2NC ===>DN=(1/4)AN
PN//MD ===>AP:PM =AN:ND =4:1