已知向量a=(4,5cosα),b=(3,-4tanα),α∈(0,π/2),若a⊥b,一,求:|a+b|.二,求cos(α+π/4...

问题描述:

已知向量a=(4,5cosα),b=(3,-4tanα),α∈(0,π/2),若a⊥b,一,求:|a+b|.二,求cos(α+π/4...
已知向量a=(4,5cosα),b=(3,-4tanα),α∈(0,π/2),若a⊥b,一,求:|a+b|.二,求cos(α+π/4)的值

a⊥b
则ab=0 得:12-20sina=0
即:sina=3/5
又有α∈(0,π/2) ,所以:cosa=4/5
|a+b|^2
=a^2+2ab+b^2
=50
所以:|a+b|=5√2
2、cos(a+π/4)
=cosasinπ/4+sinacosπ/4
=7√2/10