如图,△ABD,△BCE都是等边三角形,且A,B,C三点共线,AE与BD相交于点M,BE与CD相交于N,试说明BM与BN的大小关系.

问题描述:

如图,△ABD,△BCE都是等边三角形,且A,B,C三点共线,AE与BD相交于点M,BE与CD相交于N,试说明BM与BN的大小关系.

BM=BN.理由:
∵△ABD,△BCE都是等边三角形,
∴AB=BD,BE=BC,∠ABD=∠CBE=60°.
∴∠ABD+∠DBE=∠CBE+∠DBE.
即∠ABE=∠DBC,
在△CBD和△EBA中

AB=DB
∠ABE=∠DBC
EB=BC

∴△CBD≌△EBA.
∴∠CDB=∠BAM.
又∵A,B,C三点共线,
∴∠MBE=60°=∠ABD.
∴△BMA≌△BND.
∴BM=BN.