微分方程里面关于Pdx+Qdy的原函数问题解微分方程中,有一类方程Pdx+Qdy原函数什么积分因子法可以转化成齐次或一阶线性方程,但始终没有搞明白...最好再配有个例题.我差不多明白当dP/dy=dQ/dx时的解法了,但还一知半解,生搬硬套.还有那个u(x,y)到底是怎么回事..很费解...*有水大哥,我差不多看懂那个意思了。但如果具体求解某个这种类型的微分方程,能否随便举个例子呀,我再算算就明白了,555

问题描述:

微分方程里面关于Pdx+Qdy的原函数问题
解微分方程中,有一类方程Pdx+Qdy原函数什么积分因子法可以转化成齐次或一阶线性方程,但始终没有搞明白...最好再配有个例题.
我差不多明白当dP/dy=dQ/dx时的解法了,但还一知半解,生搬硬套.还有那个u(x,y)到底是怎么回事..很费解...
*有水大哥,我差不多看懂那个意思了。但如果具体求解某个这种类型的微分方程,能否随便举个例子呀,我再算算就明白了,555

这里涉及的知识比较多,主要思想是这样的:1.Pdx+Qdy如果恰好是某个二元函数的全微分的话,方程的通解就能求出了(此时该方程称为全微分方程),比如,设Pdx+Qdy=du(x,y)那么方程 Pdx+Qdy=0的通解便为:u(x,y)=C2.但Pdx...