设常数a∈R,集合A={x|(x-1)•(x-a)≥0},B={x|x≥a-1},若A∪B=R,则a的取值范围为_.

问题描述:

设常数a∈R,集合A={x|(x-1)•(x-a)≥0},B={x|x≥a-1},若A∪B=R,则a的取值范围为______.

当a≥1时,集合A中不等式解得:x≤1或x≥a,即A={x|x≤1或x≥a},∵B={x|x≥a-1},且A∪B=R,∴a-1≤1,即1≤a≤2;当a<1时,集合A中不等式解得:x≤a或x≥1,即A={x|x≤a或x≥1},由B={x|x≥a-1},且A∪B=R,得到a...