如图,在平面直角坐标系中,点B坐标为(x,y),且x,y满足|x+y-6|+(x-y)2=0

问题描述:

如图,在平面直角坐标系中,点B坐标为(x,y),且x,y满足|x+y-6|+(x-y)2=0
(1)求点B坐标;
(2)A为x轴上一动点,过点B作BC⊥AB交y轴正半轴于点C.求证:AB=BC.

(1)∵ |x+y-6|+(x-y)²=0
∴ |x+y-6|=0,  (x-y)²=0
x+y-6=0,  x-y=0
解得:x=3,  y=3
∴点B的坐标是(3,3)
 
(2)如图示:

过B作BE⊥Y轴,垂足为E,过B作BF⊥X轴,垂足为F,
则∠EBF=90°=∠ABF+∠ABE
∵BC⊥AB
∴∠ABC=90°=∠CBE+∠ABE
∴∠CBE=∠ABF(同角的余角相等)
由(1)知BE=BF=3
又∵∠CEB=∠AFB=90°
∴△CEB≌△AFB(ASA)
∴CB=AB(全等三角形的对应边相等)
即:AB=BC