解方程{ 2011x-2013y=2009,2010x-2012y=2008} {8359x+1641y=28359,1641x+8359y=21641}

问题描述:

解方程{ 2011x-2013y=2009,2010x-2012y=2008} {8359x+1641y=28359,1641x+8359y=21641}

{ 2011x-2013y=2009,(1)
2010x-2012y=2008 (2)
由(1)-(2)得
x-y=1
x=y+1 (3)
将(3)代入(1)得
2011(y+1)-2013y=2009
2011y+2011-2013y=2009
y=1
x=2
{8359x+1641y=28359, (1)
1641x+8359y=21641 (2) }
由(1)-(2)得
6718x-6718y=6718
x-y=1
x=y+1 (3)
将(3)代入(1)得
8359(y+1)+1641y=28359
8359y+8359+1641y=28359
10000y=20000
y=2
x=3