已知log a1b1=log a2b2=…=log anbn,求证log a1a2…an(b1b2…bn)=log a1b1=log a2b2=…=log anbn.
问题描述:
已知log a1b1=log a2b2=…=log anbn,求证log a1a2…an(b1b2…bn)=log a1b1=log a2b2=…=log anbn.
答
证明:令log a1b1=log a2b2=…=log anbn=N,则lgb1lga1=lgb2lga2=…=lgbnlgan=N,由分式的合比性质得:lgb1+lgb2+…+lgbnlga1+lga2+…+lgan=N,即lg(b1b2…bn)lg(a1a2…an)=N,∴log a1a2...