已知函数f(x)=cos(π/2+2x)+cos(2x) 1)求函数y=f(x)的单调递减区间2)若f(α-π/8)=根号2/3,求f(2α+π/8)的值
已知函数f(x)=cos(π/2+2x)+cos(2x) 1)求函数y=f(x)的单调递减区间
2)若f(α-π/8)=根号2/3,求f(2α+π/8)的值
(1)因为f(x)=cos(π/2+2x)+cos(2x)=-sin2x+cos2x=根号2*cos(2x+π/4),因为cosa的减区间为【2Kπ,2Kπ+π】,令2X+π/4属于【2Kπ,2Kπ+π】,解得X属于【Kπ-π/8,Kπ+3π/8】
(2)由(1)知f(α-π/8)=√2*cos2α=√2/3,即cos2α=1/3
f(2α+π/8)=√2*cos(4α+π/2)=-√2*sin4α=-2√2*sin2α*cos2α
当2α属于第一象限时,sin2α=2*√2/9 所以f(2α+π/8)=-8/27
当2α属于第四象限时,sin2α=-2*√2/9所以f(2α+π/8)=8/27
1、f(x)=-cos(π-π/2-2x)+cos2x
=-cos(π/2-2x)+cos2x
=cos2x-sin2x
=√2[cos2x(√2/2)-sin2x(√2/2)]
=√2cos(2x+π/4),
2kπ则2kπ-π/4∴kπ-π/82、f(α-π/8)=√2cos(2α-π/4+π/4)=√2cos2α=√2/3,
cos2α=1/3,
sin 2α=±√(1-1/9)=±2√2/3,
2α∈[2kπ,2kπ+π]为正,
即α∈[kπ,kπ+π/2]为正,
α∈[kπ-π/2,kπ]为负,
f(2α+π/8)=√2cos[4α+π/4+π/4)
=√2cos[4α+π/2)
=-√2cos(π-4α-π/2)
=-√2cos(π/2-4α)
=-√2sin4α
=-√2*2sin(2α)cos(2α)
=-2√2(±2√2/3)*(1/3)
=±8/9.
α∈[kπ,kπ+π/2]为负,
α∈[kπ-π/2,kπ]为正.