设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件: ①当x∈R时,f(x)的最小值为0,且图象关于直线x=-1对称; ②当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成立. (1)求f(1)的值; (2)
问题描述:
设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,f(x)的最小值为0,且图象关于直线x=-1对称;
②当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成立.
(1)求f(1)的值;
(2)求函数f(x)的解析式;
(3)若f(x)在区间[m-1,m]上恒有|f(x)-x|≤1,求实数m的取值范围.
答
(1)∵当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成立
∴1≤f(1)≤1
∴f(1)=1;
(2)∵当x∈R时,f(x)的最小值为0,且图象关于直线x=-1对称;
∴−
=−1,f(-1)=a-b+c=0b 2a
又∵f(1)=a+b+c=1
∴a=
,b=1 4
,c=1 2
1 4
∴f(x)=
(x+1)2;1 4
(3)设g(x)=f(x)-x=
(x−1)21 4
关于x=1对称
当x∈[-1,3]时,|f(x)-x|≤1
∴0≤m≤3.