当x≠kπ/2(k∈Z)时,sinx+tanx/cosx+cotx的值?原式=(sinx+sinx/cosx)/(cosx+cosx/sinx)上下同乘sinxcosx=(sin²xcosx+sin²x)/(cos²xsinx+cos²x)=(sin²x/cos²x)(cosx+1)/(sinx+1)x≠kπ/2sin²x>0,cos²x>0且sinx>-1,cosx>-1所以cosx+1>0,sinx+1>0所以恒为正值请问为什么sinx>-1,cosx>-1?
问题描述:
当x≠kπ/2(k∈Z)时,sinx+tanx/cosx+cotx的值?
原式=(sinx+sinx/cosx)/(cosx+cosx/sinx)
上下同乘sinxcosx
=(sin²xcosx+sin²x)/(cos²xsinx+cos²x)
=(sin²x/cos²x)(cosx+1)/(sinx+1)
x≠kπ/2
sin²x>0,cos²x>0
且sinx>-1,cosx>-1
所以cosx+1>0,sinx+1>0
所以恒为正值
请问为什么sinx>-1,cosx>-1?
答