设a是三维列向量,如果aaT(T是转置)={1 -1 1} -1 1 -1 1 -1 1 求出aT和a. 求高手指点具体解答步骤!等号后面是一个三行三列的矩阵,第一行1 -1 1,第二行-1 1 -1 ,第三行1 -1 1 。

问题描述:

设a是三维列向量,如果aaT(T是转置)={1 -1 1} -1 1 -1 1 -1 1 求出aT和a. 求高手指点具体解答步骤!
等号后面是一个三行三列的矩阵,第一行1 -1 1,第二行-1 1 -1 ,第三行1 -1 1 。

设a=(x,y,z)T,则根据矩阵乘法很容易得到
x^2 = 1, xy = -1, xz = 1
xy = -1, yy = 1, yz = -1
xz = 1, yz = -1, zz =1
所以很显然,x,y,z属于(1,-1),且,xy异号,xz同号
所以两种解
x=z=1, y=-1
x=z=-1, y=1

设a=(x,y,z)T,则根据矩阵乘法很容易得到
x^2 = 1,xy = -1,xz = 1
xy = -1,yy = 1,yz = -1
xz = 1,yz = -1,zz =1
所以很显然,x,y,z属于(1,-1),且,xy异号,xz同号
所以两种解
x=z=1,y=-1
x=z=-1,y=1