圆的一般方程,Ax^2+By^2+Cx+Dy+E=0中,E是不是表示(C/2)^2+(D/2)^2?
问题描述:
圆的一般方程,Ax^2+By^2+Cx+Dy+E=0中,E是不是表示(C/2)^2+(D/2)^2?
答
不是,E代表一个常数,E求不出多少,这个方程只是一个模子,让你往里带数.
圆的一般方程应该是x^2+y^2+Dx+Ey+F=0(其中D、E、F都是常数)
整理得(x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4
当D^2+E^2-4F>0时该方程表示以(-D/2,-E/2)为圆心、二分之根号D^2+E^2-4F为半径的圆
当D^2+E^2-4F=0时该方程表示为(-D/2,-E/2)的一个点
当D^2+E^2-4F