1:1x2x3x4+1=25=5的平方 2x3x4x5+1=121=11的平方

问题描述:

1:1x2x3x4+1=25=5的平方 2x3x4x5+1=121=11的平方
3x4x5x6+1=361=19的平方 问[n+1][n+2][n+3][n+4]+1=?
2:[a-2]a+1是指数 a=?3:m-m分之一=9 m的平方+m的平方分之1=?
注明:要结果和计算过程 只给结果的不给分

1、
原式=[(n+1)(n+4)][(n+2)(n+3)]+1
=[(n²+5n)+4][(n²+5n)+6]+1
=(n²+5n)²+10(n²+5n)+24+1
=(n²+5n)²+10(n²+5n)+25
=(n²+5n+5)²
2、
(a-2)的a次方=1
则有三种
(1)
a-2=1
a=3
(2)
a-2=-1,且a是偶数
a=1,不符合a是偶数
(3)
a-2≠0,a=0
成立
所以
a=3,a=0
3、
m-1/m=9
两边平方
m²-2+1/m²=81
m²+1/m²=83