初中数学竞赛常用公式(急)

问题描述:

初中数学竞赛常用公式(急)
明天就要去参加初中数学竞赛了,公式来不及整理了^

某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2 \x1e
2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标 \x1f
圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0
抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
以下是借用一楼的.哈!
1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化积公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)−sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
6.万能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推导出来的 )
a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba
a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2
回答者:慕云2006 - 门吏 三级 11-24 16:13
高考数学常用公式
1.德摩根公式 .
2.
3.
.
4.二次函数的解析式的三种形式 ①一般式 ;② 顶点式 ;③零点式 .
5.设 那么
上是增函数;
上是减函数.
设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.
6.函数 的图象的对称性:①函数 的图象关于直线 对称 .②函数 的图象关于直线 对称 .
7.两个函数图象的对称性:①函数 与函数 的图象关于直线 (即 轴)对称.②函数 与函数 的图象关于直线 对称.③函数 和 的图象关于直线y=x对称.
8.分数指数幂 ( ,且 ).
( ,且 ).
9. .
10.对数的换底公式 .推论 .
11. ( 数列 的前n项的和为 ).
12.等差数列的通项公式 ;
其前n项和公式 .
13.等比数列的通项公式 ;
其前n项的和公式 或 .
14.等比差数列 : 的通项公式为

其前n项和公式为 .
15.分期付款(按揭贷款) 每次还款 元(贷款 元, 次还清,每期利率为 ).
16.同角三角函数的基本关系式 , = , .
17.正弦、余弦的诱导公式
18.和角与差角公式
;
;
.
(平方正弦公式);
.
= (辅助角 所在象限由点 的象限决定, ).
19.二倍角公式 .
. .
20.三角函数的周期公式 函数 ,x∈R及函数 ,x∈R(A,ω, 为常数,且A≠0,ω>0)的周期 ;函数 , (A,ω, 为常数,且A≠0,ω>0)的周期 .
21.正弦定理 .
22.余弦定理 ; ; .
23.面积定理(1) ( 分别表示a、b、c边上的高).
(2) .
(3) .
24.三角形内角和定理 在△ABC中,有
.
25.平面两点间的距离公式
= (A ,B ).
26.向量的平行与垂直 设a= ,b= ,且b 0,则
a b b=λa .
a b(a 0) a•b=0 .
27.线段的定比分公式 设 , , 是线段 的分点, 是实数,且 ,则
( ).
28.三角形的重心坐标公式 △ABC三个顶点的坐标分别为 、 、 ,则△ABC的重心的坐标是 .
29.点的平移公式 (图形F上的任意一点P(x,y)在平移后图形 上的对应点为 ,且 的坐标为 ).
30.常用不等式:
(1) (当且仅当a=b时取“=”号).
(2) (当且仅当a=b时取“=”号).
(3)
(4)柯西不等式
(5)
31.极值定理 已知 都是正数,则有
(1)如果积 是定值 ,那么当 时和 有最小值 ;
(2)如果和 是定值 ,那么当 时积 有最大值 .
32.一元二次不等式 ,如果 与 同号,则其解集在两根之外;如果 与 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.

.
33.含有绝对值的不等式 当a> 0时,有
.
或 .
34.无理不等式(1) .
(2) .
(3) .
35.指数不等式与对数不等式 (1)当 时,
; .
(2)当 时,
;
36.斜率公式 ( 、 ).
37.直线的四种方程
(1)点斜式 (直线 过点 ,且斜率为 ).
(2)斜截式 (b为直线 在y轴上的截距).
(3)两点式 ( )( 、 ( )).
(4)一般式 (其中A、B不同时为0).
38.两条直线的平行和垂直 (1)若 ,
① ;② .
(2)若 , ,且A1、A2、B1、B2都不为零,
① ;② ;
39.夹角公式 .( , , )
( , , ).
直线 时,直线l1与l2的夹角是 .
40.点到直线的距离 (点 ,直线 : ).
41. 圆的四种方程
(1)圆的标准方程 .
(2)圆的一般方程 ( >0).
(3)圆的参数方程 .
(4)圆的直径式方程 (圆的直径的端点是 、 ).
42.椭圆 的参数方程是 .
43.椭圆 焦半径公式 , .
44.双曲线 的焦半径公式
, .
45.抛物线 上的动点可设为P 或 P ,其中 .
46.二次函数 的图象是抛物线:(1)顶点坐标为 ;(2)焦点的坐标为 ;(3)准线方程是 .
47.直线与圆锥曲线相交的弦长公式 或
(弦端点A ,由方程 消去y得到 , , 为直线 的倾斜角, 为直线的斜率).
48.圆锥曲线的两类对称问题:
(1)曲线 关于点 成中心对称的曲线是 .
(2)曲线 关于直线 成轴对称的曲线是
.
49.“四线”一方程 对于一般的二次曲线 ,用 代 ,用 代 ,用 代 ,用 代 ,用 代 即得方程
,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.
50.共线向量定理 对空间任意两个向量a、b(b≠0 ),a‖b 存在实数λ使a=λb.
51.对空间任一点O和不共线的三点A、B、C,满足 ,
则四点P、A、B、C是共面 .
52. 空间两个向量的夹角公式 cos〈a,b〉= (a= ,b= ).
53.直线 与平面所成角 ( 为平面 的法向量).
54.二面角 的平面角 或 ( , 为平面 , 的法向量).
55.设AC是α内的任一条直线,且BC⊥AC,垂足为C,又设AO与AB所成的角为 ,AB与AC所成的角为 ,AO与AC所成的角为 .则 .
56.若夹在平面角为 的二面角间的线段与二面角的两个半平面所成的角是 , ,与二面角的棱所成的角是θ,则有 ;
(当且仅当 时等号成立).
57.空间两点间的距离公式 若A ,B ,则
= .
58.点 到直线 距离 (点 在直线 上,直线 的方向向量a= ,向量b= ).
59.异面直线间的距离 ( 是两异面直线,其公垂向量为 , 分别是 上任一点, 为 间的距离).
60.点 到平面 的距离 ( 为平面 的法向量, 是经过面 的一条斜线, ).
61.异面直线上两点距离公式
(两条异面直线a、b所成的角为θ,其公垂线段 的长度为h.在直线a、b上分别取两点E、F, , , ).
62.
(长度为 的线段在三条两两互相垂直的直线上的射影长分别为 ,夹角分别为 )(立几中长方体对角线长的公式是其特例).
63. 面积射影定理
(平面多边形及其射影的面积分别是 、 ,它们所在平面所成锐二面角的为 ).
64.欧拉定理(欧拉公式) (简单多面体的顶点数V、棱数E和面数F)
65.球的半径是R,则其体积是 ,其表面积是 .
1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化积公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)−sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
6.万能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推导出来的 )
a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba
a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2
祝你考个好成绩.