找规律题:(1/(1*3))+(1/(2*4))+(1/(3*5)+...+(1/(9*11))的计算过程规律和答案都需要
问题描述:
找规律题:(1/(1*3))+(1/(2*4))+(1/(3*5)+...+(1/(9*11))的计算过程
规律和答案都需要
答
是要结果还是要规律?
通项是:1/(n*(n+2))=1/2*(1/n-1/(n+2))
求和时,把1/2提出去,里面的中间项就冲销了,只剩两头的,自己用笔整理一下就能看出和来。
答
1/n(n+2)=[1/n-1/(n+2)]/2
(1/(1*3))+(1/(2*4))+(1/(3*5)+...+(1/(9*11))
=(1-1/3+1/2-1/4+1/3-1/5+--------+1/8-1/10+1/9-1/11)/2
=(1+1/2-1/10-1/11)/2
=36/55
答
(1/(1*3))+(1/(2*4))+(1/(3*5)+...+(1/(9*11))
=(1-1/3)/2+(1/2-1/4)/2+(1/3-1/5)/2+……+(1/9-1/11)/2
=(1+1/2-1/10-1/11)/2
=72/55