将分式方程(1/x+1)-(1/x²)-1=3/1-x化为整式方程

问题描述:

将分式方程(1/x+1)-(1/x²)-1=3/1-x化为整式方程

等式两边同时乘以(1+x) x^2 (1-x)
则,等式转化为:

x^2 (1-x) - (1+x) (1-x) - (1+x) x^2 (1-x) = 3 * (1+x) x^2
(x^2 - x^3) - ( 1 - x^2) - ( 1-x^2) * x^2 = (3+3x) x^2
x^2 - x^3 - 1 + x^2 - x^2 + x^4 = 3x^2 + 3x^3
x^4 - x^3 + x^2 - 1 = 3x^3 + 3x^2
x^4 - 4x^3 - 2x^2 - 1 = 0

1/(x+1)-1/(x^2-1)=3/(1-x),
两边都乘以(x^2-1),得
x-1-1=-3(x+1),
4x=-1,
x=-1/4.
检验:它是原方程的根.