设f(x)=x^2+px+q(p,q∈R),M={x|x=f(x)},N={x|x=f[f(x)]},证明M包含于N,当M={-1,3设f(x)=x^2+px+q(p,q∈R),M={x|x=f(x)},N={x|x=f[f(x)]},证明M包含于N
问题描述:
设f(x)=x^2+px+q(p,q∈R),M={x|x=f(x)},N={x|x=f[f(x)]},证明M包含于N,当M={-1,3
设f(x)=x^2+px+q(p,q∈R),M={x|x=f(x)},N={x|x=f[f(x)]},证明M包含于N
答
x=f(x)是x=f[f(x)}的一个解则M包含于N
答
对于M中元素x,满足x=f(x),那么f(f(x))=f(x)=x,x也在N中,故M包含于N