正弦余弦定理 急
问题描述:
正弦余弦定理 急
若sinA∕a=cosB∕b=cosC∕c,则三角形ABC形状
在锐角三角形ABC中,BC=2,AB=3,则AC范围
在三角形ABC中,a=sin10度 ,b=sin50度 ,C=70度 ,求面积
在三角形ABC中,若sinA:sinB:sinC=5:7:8,角B=__
答
(1)因为sinA:sinB:sinC=a:b:c
所以sinA∕sinA=cosB∕sinB=cosC∕sinC
即1=cotB=cotC,所以B=C=45°,即等腰直角三角形
(2)AC^2=BC^2+AB^2-2BC*AC*cosB=2^2+3^2-2*2*3cosB=13-12cosB
因为0°(3)S=1/2倍absinC
=0.5*sin10°*sin50°*sin70°
=0.5*cos20°*cos40°*cos80°
=0.5*sin20°*cos20°*cos40°*cos80°/sin20°
=0.5*(1/2)sin40°*cos40°*cos80°/sin20°
=0.5*(1/4)sin80°*cos80°/sin20°
=0.5*(1/8)sin160°/sin20°
=1/16
(4)因为sinA:sinB:sinC=5:7:8
所以a:b:c=5:7:8
由余弦定理算得cosB=1/2,所以B=60°.