为测路灯高度,晚上一身高1.6m的人在某处测得其影长1.6m.当他朝路灯方向走了5.4m,其影长变为1m,求路灯多过程清晰‘

问题描述:

为测路灯高度,晚上一身高1.6m的人在某处测得其影长1.6m.当他朝路灯方向走了5.4m,其影长变为1m,求路灯多
过程清晰‘

设走了5.4米后此人离路灯还有X米
(X+7):(X+1)=1.6:1
X=9

路灯什么啊?

解;设路灯高X,影长1M时他距灯Y,则有:
X=1.6+5.4+Y 和 X=(1+Y)*1.6
得到Y=9 X=16
得解
(用三角形做图这画不了,望谅解 )

把图画出来,设路灯长X
1.6/X=1/(X-6)
X=16

画图可得相似三角形,
根据相似三角形对应边成正比例可得
灯高:人高=(影长+人距):影长
若设灯高为L,人高已知为1.6m,影长为1.6m和1m,第一次测时人距离灯为d,第2次就是(d-5.4)m
则可列正比例式
L:1.6m=(1.6m+d):1.6m
L:1.6m=(1m+d-5.4m):1m
解得L=16m
碰到类似的题目可考虑用数学知识解决.

解;设路灯高为H,当影长为1m时,距路灯X.
根据相似三角形
1.6/1.6=H/(1.6+5.4+X)
1.6/1=H/(7+X)