已知数列an的前n项和为sn=n^2+1/2n,求这个数列的通项公式,这个数列是不是等差数列?由题意知:当n=1时,a1=s1=2,当n≥2时,Sn=n2+1①,sn-1=(n-1)2+1②,①-②得:an=sn-sn-1=n2+1-((n-1)2+1)=2n-1,则数列an的通项公式为an=2n-1(其中n≥1的正整数); 答案中我看不懂第一横的 也就是当n=1时,a1=s1=2,为什么要写这个
问题描述:
已知数列an的前n项和为sn=n^2+1/2n,求这个数列的通项公式,这个数列是不是等差数列?
由题意知:当n=1时,a1=s1=2,
当n≥2时,Sn=n2+1①,sn-1=(n-1)2+1②,
①-②得:an=sn-sn-1=n2+1-((n-1)2+1)=2n-1,
则数列an的通项公式为an=2n-1(其中n≥1的正整数); 答案中我看不懂第一横的 也就是当n=1时,a1=s1=2,为什么要写这个
答
1、公式an=sn-s(n-1)只在n≥2时才成立,2、所以用公式an=sn-s(n-1)求出an后不一定是通项公式,只有这个an在n=1时也成立才是通项公式.3、请看下题.已知数列{an}中,a1=4,an>0,前n项和为Sn.若an=√Sn+√S(n-1) (n∈N*...