如图所示,在光滑水平绝缘平面上,水平匀强电场方向与X轴间成135°角,电场强度E=1×103N/c,某带电小球电量为q=-2×10-6c,质量m=1×10-3kg,以初速度V0=2m/s从坐标轴原点出发,在XOY平面内运动,V0与水平匀强电场垂直,(1)该带电小球所受到的电场力的大小;(2)该带电小球在第二秒内速度变化量的大小;(3)当带电小球再经过X轴时与X轴交于A点,求带电小球经过A点时速度V、OA间电势差UOA.

问题描述:

如图所示,在光滑水平绝缘平面上,水平匀强电场方向与X轴间成135°角,电场强度E=1×103N/c,某带电小球电量为q=-2×10-6c,质量m=1×10-3kg,以初速度V0=2m/s从坐标轴原点出发,在XOY平面内运动,V0与水平匀强电场垂直,

(1)该带电小球所受到的电场力的大小;
(2)该带电小球在第二秒内速度变化量的大小;
(3)当带电小球再经过X轴时与X轴交于A点,求带电小球经过A点时速度V、OA间电势差UOA

(1)带电粒子受到的电场力:F=qE=2×10-6×103N=2×10-3N(2)由牛顿第二定律得:a=Fm得:△v=a×1=2m/s(3)∵tan45°=vy•t2v0t∴Vy=2V0   解得:v=5m/s v0=25m/s=4.5m/s速度方向:与x轴...
答案解析:(1)直接由公式F=qE求出电场力;(2)根据牛顿第二定律求出加速度,再求出速度的变化;
(3)由位移公式,依据运动的合成与分解,从而求出坐标;由U=Ed,可求出电势差.
考试点:电场强度;牛顿第二定律.


知识点:理解运动合成与分解的方法,并运用三角函数关系来综合求解,最后还注意U=Ed式中的d的含义.