圆O直径AB的延长线与弦CD的延长线相交于点P,E为圆O上一点,AE弧=AC弧,DE交AB于点F,求证圆O直径AB的延长线与弦CD的延长线相交于点P,E为圆O上一点,AE弧=AC弧,DE交AB于点F,求证:PF*PO=PD*PC

问题描述:

圆O直径AB的延长线与弦CD的延长线相交于点P,E为圆O上一点,AE弧=AC弧,DE交AB于点F,求证
圆O直径AB的延长线与弦CD的延长线相交于点P,E为圆O上一点,AE弧=AC弧,DE交AB于点F,求证:PF*PO=PD*PC

证明:
连接OC、OE
则∠COE=2∠CDE
∵弧AC=弧AE
∴∠AOC=∠AOE
∴∠AOC=∠CDE
∴∠COP=∠PDF
∵∠P=∠P
∴△PDF∽△POC
∴PD/PO=PF/PC
∴PF*PO=PD*PC