如图矩形ABCD中,DP平分∠ADC交BC于P点,将一个直角三角板的直角顶点放在P点处,且使它的一条直角边过A点,另一条直角边交CD于E.找出图中与PA相等的线段.并说明理由.

问题描述:

如图矩形ABCD中,DP平分∠ADC交BC于P点,将一个直角三角板的直角顶点放在P点处,且使它的一条直角边过A点,另一条直角边交CD于E.找出图中与PA相等的线段.并说明理由.

图中与PA相等的线段是PE.理由如下:∵DP平分∠ADC,∴∠ADP=∠PDC=45°,又∵AD∥BC,∴∠ADP=∠DPC,∴∠PDC=∠DPC,所以PC=DC.∵AB=DC,∴AB=PC.∵直角三角板的直角顶点放在点P处,∴∠APE=90°.∵∠APB+∠EPC...
答案解析:可由∠B=∠C=90°,AB=PC,∠APB=∠PEC,证得△ABP≌△PCE,所以PA=PE.
考试点:矩形的性质;全等三角形的判定与性质.


知识点:本题把角平分线置于矩形的背景之中,与平行线组合使用,沟通了角与角之间的关系.由于角平分线、平行线都具有转化角的作用,在两者共存的图形中常会出现等腰三角形,所以命题者常将两者组合,设计出精彩纷呈的题目.