已知抛物线方程y²=4x,过焦点作直线L交抛物线C于A、B两点,求证:1/AM+1/BM恒为定值(AM和BM是长度)

问题描述:

已知抛物线方程y²=4x,过焦点作直线L交抛物线C于A、B两点,求证:1/AM+1/BM恒为定值(AM和BM是长度)

焦点M(1,0),设直线x-1=ky,
(之所以这样设,而不设y=k(x-1)是因为这样可以包括垂直于x轴的那条直线x=1的那种情况)
则(x-1)²=x²-2x+1=k²y²=4k²x
x²-(2+4k²)x+1=0
x1+x2=2+4k²,x1x2=1.
线段MA、MB的长是点A、B到准线x=-p/2的距离,
则|MA|=x1+1,|MB|=x2+1,
1/|MA|+1/|MB|=1/(x1+1)+1/(x2+1)
=(x1+x2+2)/(x1x2+x1+x2+1)
=4(1+k²)/(1+2+4k²+1)
=1
一般的情况:
焦点F(p/2,0),设直线x-p/2=ky,
则x²-px+p²/4=k²y²=2pk²x
x²-(p+2pk²)x+p²/4=0
x1+x2=p+2pk²,x1x2=p²/4.
线段FA、FB的长是点A、B到准线x=-p/2的距离,
则FA=x1+p/2,FB=x2+p/2,
1/FA+1/FB=1/(x1+p/2)+1/(x2+p/2)
=(x1+x2+p)/[x1x2+p(x1+x2)/2+p²/4]
=2p(1+k²)/[p²/4+p²/2+p²k²+p²/4]
=2p(1+k²)/[p²(1+k²)]
=2/p