已知f(x)的二阶导数小于0,用拉格朗日定理证明f(X1+x2/2)>f(x1)+f(X2)/2,谢谢.
问题描述:
已知f(x)的二阶导数小于0,用拉格朗日定理证明f(X1+x2/2)>f(x1)+f(X2)/2,谢谢.
答
记c=(x1+x2)/2,d=(x2-x1)/2,
对[x1,c]用Lagrange中值定理得到(x1,c)中存在t1使得f'(t1)=[f(c)-f(x1)]/d;
对[c,x2]用Lagrange中值定理得到(c,x2)中存在t2使得f'(t2)=[f(x2)-f(c)]/d.
由于f''(x)0,化简一下就是f(c)>[f(x1)+f(x2)]/2.