如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD.则在三棱锥A-BCD中,下列命题正确的是(  )A. 平面ABD⊥平面ABCB. 平面ADC⊥平面BDCC. 平面ABC⊥平面BDCD. 平面ADC⊥平面ABC

问题描述:

如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD.则在三棱锥A-BCD中,下列命题正确的是(  )
A. 平面ABD⊥平面ABC
B. 平面ADC⊥平面BDC
C. 平面ABC⊥平面BDC
D. 平面ADC⊥平面ABC

∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°
∴BD⊥CD
又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD
故CD⊥平面ABD,则CD⊥AB,又AD⊥AB
故AB⊥平面ADC,所以平面ABC⊥平面ADC.
故选D.
答案解析:由题意推出CD⊥AB,AD⊥AB,推出AB⊥平面ADC,可得平面ABC⊥平面ADC.
考试点:平面与平面垂直的判定.


知识点:本题考查平面与平面垂直的判定,考查逻辑思维能力,是中档题.